Sequences: Lists and
Tuples

1. Introduction
2. List
3. Tuple

4. Reference

One more topic you'll need to understand is the 1ist data type and its cousin, the
tuple. Lists and tuples can contain multiple values, which makes writing programs
that handle large amounts of data easier.

One more topic you'll need to understand is the 1list data type and its cousin, the
tuple. Lists and tuples can contain multiple values, which makes writing programs
that handle large amounts of data easier.

These data types are called containers, meaning they are objects that "contain" other
objects. They each have some important distinguishing properties and come with their
own set of function called methods for interacting with others.

One more topic you'll need to understand is the 1list data type and its cousin, the
tuple. Lists and tuples can contain multiple values, which makes writing programs
that handle large amounts of data easier.

These data types are called containers, meaning they are objects that "contain" other
objects. They each have some important distinguishing properties and come with their
own set of function called methods for interacting with others.

List and tuple belong to sequence data types, which means they represent ordered
collections of items. They share the same characteristic as string and the range
object returned by range() function.

List

Ina string, the values are characters; ina list, they can be any type. The values in a
list are called elements or sometimes items. Items are separated with commas.

Ina string, the values are characters; ina list, they can be any type. The values in a
list are called elements or sometimes items. Items are separated with commas.

A Lict in PytAOh

Lict = [10, Favtutor, 10, [5,10,15]]

R

Lict[o] Cict[1] Clict[2] (Cict[3]

\/ Ordered: Iteme have defined order which cannot be changed
/ Mutable: Iteme can be modified anytime
/[Allow duplicatee: Iteme with the came value ic allowed

source: https://favtutor.com/blogs/list-vs-dictionary

There are several ways to create a new list; the simplest is to enclose the elements in
square brackets (“[" and "]”). A 1list that contains no elements is called an empty list;
you can create one with empty brackets.

There are several ways to create a new list; the simplest is to enclose the elements in
square brackets (“[" and "]”). A 1list that contains no elements is called an empty list;
you can create one with empty brackets.

type([])

list

There are several ways to create a new list; the simplest is to enclose the elements in
square brackets (“[" and “]"). A 1ist that contains no elements is called an empty 1list;
you can create one with empty brackets.

type([])
list
type([10, 20, 30, 40]), type(['calculus', 'introduction to mathematics', 'com

(list, list)

There are several ways to create a new list; the simplest is to enclose the elements in
square brackets (“[" and "]”). A 1list that contains no elements is called an empty list;
you can create one with empty brackets.

type([])
list
type([10, 20, 30, 40]), type(['calculus', 'introduction to mathematics', 'com

(list, list)

The first example is a list of four integers and the second is a list of four strings.

6 /93

Getting Individual Values in a List with Indexes

You can reference a list item by writing the 1list 's name followed by the element's
index (that is, its position number) enclosed in square brackets ([], known as the
subscript operator or bracket operator). Remember that the indices start at 0:

You can reference a list item by writing the 1list 's name followed by the element's
index (that is, its position number) enclosed in square brackets ([], known as the
subscript operator or bracket operator). Remember that the indices start at 0:

subjects = ['calculus', 'introduction to mathematics', 'computer programming'
print(subjects[9])
print(subjects[3])

calculus
linear algebra

You can reference a list item by writing the 1list 's name followed by the element's
index (that is, its position number) enclosed in square brackets ([], known as the
subscript operator or bracket operator). Remember that the indices start at 0:

subjects = ['calculus', 'introduction to mathematics', 'computer programming'
print(subjects[9])
print(subjects[3])

calculus
linear algebra

Note that the first index is 0, the last index is one less than the size of the 1ist; a
list of four items has 3 as its last index.

Python will give you an IndexError error message (which is a type of runtime error) if
you use an index that exceeds the number of values in your list value.

Python will give you an IndexError error message (which is a type of runtime error) if
you use an index that exceeds the number of values in your list value.

print(subjects[4])

IndexError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _5960\2337914966.py in

----> 1 print(subjects[4])

IndexError: list index out of range

Python will give you an IndexError error message (which is a type of runtime error) if
you use an index that exceeds the number of values in your list value.

print(subjects[4])

IndexError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _5960\2337914966.py in

----> 1 print(subjects[4])

IndexError: list index out of range

The elements of a 1ist don’t have to be the same type. The following list contains a
string, a float, an integer, and another list:

Python will give you an IndexError error message (which is a type of runtime error) if
you use an index that exceeds the number of values in your list value.

print(subjects[4])

IndexError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _5960\2337914966.py in

----> 1 print(subjects[4])

IndexError: list index out of range

The elements of a 1ist don’t have to be the same type. The following list contains a
string, a float, an integer, and another list:

spam = ['spam', 2.0, 5, [10, 20]]

The values in these lists of lists can be accessed using multiple indexes:

The values in these lists of lists can be accessed using multiple indexes:

spam[3][1] # spam = ['spam', 2.0, 5, [16, 20]]

out[7]: 20

The values in these lists of lists can be accessed using multiple indexes:
spam[3][1] # spam = ['spam', 2.0, 5, [16, 20]]

20

The first index dictates which items in the outer 1list to use, and the second indicates
the value within the inner 1ist . If you only use one index like spam[3], the program
will print the entire list value at that index.

The values in these lists of lists can be accessed using multiple indexes:
spam[3][1] # spam = ['spam', 2.0, 5, [16, 20]]

20

The first index dictates which items in the outer 1list to use, and the second indicates
the value within the inner 1ist . If you only use one index like spam[3], the program
will print the entire list value at that index.

spam|[3]

[10, 20]

In [9]: display quiz(path+"listl.json", max_width=800)

What is printed by the following statements?

dog False

3.14 []

In [10]: display_quiz(path+"list2.json", max_width=800)

Which of the following correctly uses indexing? Assume that a is a list or string.

al] t = a[0]

x = [8] w = [a]

Negative Indexes and the len() function

While indexes start at 0 and go up, you can also use negative integers for the index. The
integer value -1 refers to the last index ina 1list, the value -2 refers to the second-to-

last index ina list, and so on.

While indexes start at 0 and go up, you can also use negative integers for the index. The
integer value -1 refers to the last index ina 1list, the value -2 refers to the second-to-
last index ina list, and so on.

print(subjects[-1]) # subjects = ['calculus', 'introduction to mathematics’,
print(subjects[-2])

linear algebra
computer programming

While indexes start at 0 and go up, you can also use negative integers for the index. The
integer value -1 refers to the last index ina 1list, the value -2 refers to the second-to-

last index ina list, and so on.

print(subjects[-1]) # subjects = ['calculus', 'introduction to mathematics’,
print(subjects[-2])

linear algebra
computer programming

The len() function will return the number of values that are in a 1list, just like it can
count the number of characters in a string.

While indexes start at 0 and go up, you can also use negative integers for the index. The
integer value -1 refers to the last index ina 1list, the value -2 refers to the second-to-

last index ina list, and so on.

print(subjects[-1]) # subjects = ['calculus', 'introduction to mathematics’,
print(subjects[-2])

linear algebra
computer programming

The len() function will return the number of values that are in a 1list, just like it can
count the number of characters in a string.

len(subjects)

4

Getting a sublist from Another List with Slices

Just as an index can get a single value from a 1list, a slice can get several values from a
list as a new list. A slice is typed between square brackets, like an index, but has two
integers separated by a colon.

Just as an index can get a single value from a 1list, a slice can get several values from a
list as a new list. A slice is typed between square brackets, like an index, but has two
integers separated by a colon.

e subjects[2] is a list with an index.
e subjects[1:3] isa list with a slice.

Just as an index can get a single value from a 1list, a slice can get several values from a
list as a new list. A slice is typed between square brackets, like an index, but has two
integers separated by a colon.

e subjects[2] is a list with an index.
e subjects[1:3] isa list with a slice.

The slice operator [n:m] returns the part of the string starting with the element at index
n and go up to but not including the element at index m. A slice evaluates to a new
list!

subjects = ['calculus', 'introduction to mathematics', 'computer programming'
print(subjects[0:3])
print(subjects[1:-1])

['calculus', 'introduction to mathematics', 'computer programming’]
["introduction to mathematics', 'computer programming']

subjects = ['calculus', 'introduction to mathematics',
print(subjects[0:3])
print(subjects[1:-1])

‘computer programming'

["calculus', 'introduction to mathematics',

'computer programming’]
["introduction to mathematics',

'computer programming’]

As a shortcut, you can leave out one or both indexes on either side of the colon in the
slice. Leaving out the first index is the same as using 0 or the beginning of the list.

Leaving out the second index is the same as using the length of the 1ist, which will slice
to the end of the 1ist.

subjects = ['calculus', 'introduction to mathematics', 'computer programming'
print(subjects[0:3])
print(subjects[1:-1])

['calculus', 'introduction to mathematics', 'computer programming’]
["introduction to mathematics', 'computer programming']

As a shortcut, you can leave out one or both indexes on either side of the colon in the
slice. Leaving out the first index is the same as using 0 or the beginning of the list.

Leaving out the second index is the same as using the length of the 1ist, which will slice
to the end of the 1ist.

subjects = ['calculus', 'introduction to mathematics', 'computer programmin
print(subjects[:3]) # same as subjects[0:3]

print(subjects[1:]) # same as subjects[1:len(s)]

print(subjects[:]) # same as s[0:len(s)]

['calculus', 'introduction to mathematics', 'computer programming’]

["introduction to mathematics', 'computer programming', 'linear algebr
a'l]

['calculus', 'introduction to mathematics', 'computer programming', 'l
inear algebra']

Just like range(), slicing has the optional third index that can be used to specify the
step.

Just like range(), slicing has the optional third index that can be used to specify the

step.

subjects = ['calculus', 'introduction to mathematics', 'computer programmin

print(subjects[::2]) # Note the default step is 1
print(subjects[::-1]) # Reverse the order of the Llist, subjects[len(subjects)

['calculus', 'computer programming']
['linear algebra', 'computer programming', 'introduction to mathematic

s', 'calculus']

18 / 93

In [16]: display quiz(path+"slice.json", max_width=800)

What is printed by the following statements?

[[56, 57, "dog"], 2.5, 3.14, False] [2.5, 3.14, False]

[2.5, 3.14] 2.5

Changing Values ina List with Indexes

Unlike strings, lists are mutable because you can reassign an itemina list.
When the bracket operator appears on the left side of an assignment, it identifies the
element of the 1ist that will be assigned. An assignment to an element of a list is called

item assignment.

Unlike strings, lists are mutable because you can reassign an itemina list.
When the bracket operator appears on the left side of an assignment, it identifies the
element of the 1ist that will be assigned. An assignment to an element of a list is called

item assignment.

numbers = [17, 123, 42, 7]
numbers[1] = 5
print(numbers)

[17, 5, 42, 7]

Unlike strings, lists are mutable because you can reassign an itemina list.
When the bracket operator appears on the left side of an assignment, it identifies the
element of the 1ist that will be assigned. An assignment to an element of a list is called

item assignment.

numbers = [17, 123, 42, 7]
numbers[1] = 5
print(numbers)

[17, 5, 42, 7]

The first element of numbers, which used to be 123, is now 5.

List Concatenation and List Replication

Lists can be concatenated and replicated just like strings. The + operator combines two
lists to create a new list and the * operator can be used with a 1ist and an integer
value to replicate the list.

Lists can be concatenated and replicated just like strings. The + operator combines two
lists to create a new list and the * operator can be used with a 1ist and an integer
value to replicate the list.

[1, 2, 3] + ['A", "B, 'C']

[1, 2, 3, 'A", 'B', 'C']

Lists can be concatenated and replicated just like strings. The + operator combines two
lists to create a new list and the * operator can be used with a 1ist and an integer

value to replicate the list.
[1, 2, 3] + ['A', 'B"', 'C']
[1, 2, 3, 'A', lBl, ICI]

[IXI’ IYI, IZI] * 3

In [20]: display quiz(path+"concate.json", max_width=800)

What is printed by the following statements?

6 [1.3,5,2,4,6]

[1.2,3,4,5,6] [3,7,11]

Removing Values from Lists with del Statements

The del statement will delete values at an index ina list. All values in the list after
the deleted value will be moved up to the front of list.

The del statement will delete values at an index ina list. All values in the list after
the deleted value will be moved up to the front of list.

t= [lal) lbl.’ ICI, Idl, Iel]

del t[1] # using 1index
print(t)

The del statement will delete values at an index ina list. All values in the list after
the deleted value will be moved up to the front of list.

t= [Ial) lbl.’ ICI, Idl, lel]
del t[1] # using 1index
print(t)

We can also delete multiple adjacent elements using slicing:

The del statement will delete values at an index ina list. All values in the list after
the deleted value will be moved up to the front of list.

t= [lal) lbl-’ Icl, Idl, lel]

del t[1] # using index
print(t)

We can also delete multiple adjacent elements using slicing:

del t[1:3]
print(t)

List traversal

In Chapter 2, you have learned about using for loops to execute a block of code a
certain number of times. Technically, a for loop repeats the code block once for each
item in a sequence. We will refer to this type of sequence iteration as iteration by item.

In Chapter 2, you have learned about using for loops to execute a block of code a
certain number of times. Technically, a for loop repeats the code block once for each
item in a sequence. We will refer to this type of sequence iteration as iteration by item.

for i in range(4):
print(i)

W NERO

In Chapter 2, you have learned about using for loops to execute a block of code a
certain number of times. Technically, a for loop repeats the code block once for each
item in a sequence. We will refer to this type of sequence iteration as iteration by item.

for i in range(4):
print(i)

W NERO

print(range(4))
list(range(4))

range(0, 4)

[e) 1) 2) 3]

This is because the return value from range(4) is a sequence that Python considers
similarto [0, 1, 2, 3].The following program has the same output as the previous
one:

This is because the return value from range(4) is a sequence that Python considers

similarto [0, 1, 2, 3].The following program has the same output as the previous
one:

for i in [0, 1, 2, 3]:
print(i)

W NRERO

This is because the return value from range(4) is a sequence that Python considers

similarto [0, 1, 2, 3].The following program has the same output as the previous
one:

for i in [0, 1, 2, 3]:
print(i)

W NRERO

for subject in subjects: # subjects = ['calculus’', 'introduction to mathemati
print(subject)

calculus

introduction to mathematics
computer programming

linear algebra

This works well if you only need to read the elements of the 1ist . But you need the

indices if you want to write or update the elements. A common way to do that is to
combine the functions range() and len():

This works well if you only need to read the elements of the 1ist . But you need the

indices if you want to write or update the elements. A common way to do that is to
combine the functions range() and len():

A common Python technique is to use range(len(somelList)) with a for loop to
iterate over the indexes of a list.

This works well if you only need to read the elements of the 1ist . But you need the

indices if you want to write or update the elements. A common way to do that is to
combine the functions range() and len():

A common Python technique is to use range(len(somelList)) with a for loop to
iterate over the indexes of a list.

numbers = [17, 5, 42, 7]

for i in range(len(numbers)):
print(i, numbers[i])
numbers[i] = numbers[i]**2

print(numbers)

=

0 17
15
2 42
37
[289, 25, 1764, 49]

The in and not in Operators

You can determine whether an objectis orisn'tina list with the in and not in
operators. These expressions will evaluate to a Boolean value.

You can determine whether an objectis orisn'tina list with the in and not in
operators. These expressions will evaluate to a Boolean value.

print('howdy' in ['hello', 'hi', 'howdy', 'heyas'])
print('English' not in subjects)

True
True

Using the enumerate() Function with Lists

Instead of using the range(len(someList)) technique with a for loop to obtain the
integer index of the items in the 1list, you can call the enumerate() function instead.
On each iteration of the loop, enumerate() will return two values: the index of the

item and the item itself.

Instead of using the range(len(someList)) technique with a for loop to obtain the
integer index of the items in the 1list, you can call the enumerate() function instead.
On each iteration of the loop, enumerate() will return two values: the index of the

item and the item itself.

numbers = [17, 5, 42, 7]
print(list(enumerate(numbers)))

for i, number in enumerate(numbers):
print(i, number)
numbers[i] = number**2

print(numbers)

[(e, 17), (1, 5), (2, 42), (3, 7)]
0 17

15

2 42

37
[289, 25, 1764, 49]

Methods of the 1ist

A method, introduced in Chapter 1, is the same as a function, except it is "called on" an
object. For example, if a 1ist object were stored in spam, you would call the index()

list method on that 1list like so: spam.index('hello") . The method part comes after
the object, separated by a period.

A method, introduced in Chapter 1, is the same as a function, except it is "called on" an
object. For example, if a 1ist object were stored in spam, you would call the index()
list method on that 1list like so: spam.index('hello") . The method part comes after
the object, separated by a period.

Each data type has its own set of methods. The 1ist data type, for example, has several

useful methods for finding, adding, removing, and otherwise manipulating values in a
list.

Adding elements to Lists withthe append() and insert() Methods

append() adds a new element to the end of a list:

append() adds a new element to the end of a list:

In ’—:)ZW ['a', 'bl, IC']

.append('d') # not t = t.append('d")
in-place operation!

C‘Uﬁﬁjé‘—“ [lal, lb', 'C', 'dl]

append() adds a new element to the end of a list:

= [lal) lbl.’ lcl]
.append('d') # not t = t.append('d")
in-place operation!

[Ial, lbl, lcl, Idl]
The previous append() method call adds the argument to the end of the list. The
insert() method can insert an element at any index in the 1list. The first argument to

insert() is the index for the new value, and the second argument is the new value to
be inserted.

append() adds a new element to the end of a list:

= [] a 1 , 1 bl , 1 C]]
.append('d') # not t = t.append('d")
in-place operation!

[Ial, lbl, lcl, Idl]
The previous append() method call adds the argument to the end of the list. The
insert() method can insert an element at any index in the 1list. The first argument to

insert() is the index for the new value, and the second argument is the new value to
be inserted.

t = [lal, lbl, ICI]
t.insert(1,'e') # not t = t.insert(1, 'e')
t

in-place operation!

[Ial, lel, lbl, Icl]

Methods belong to a single data type. The append() and insert() methods are
list methods and can be called only on 1ist object, not on other objects such as
strings or integers.

Methods belong to a single data type. The append() and insert() methods are

list methods and can be called only on 1ist object, not on other objects such as
strings or integers.

eggs = 'hello’
eggs.append('world")

AttributeError
last)

~\AppData\Local\Temp\ipykernel 5960\3759910952.py in
1 eggs = 'hello’
----> 2 eggs.append('world")

Traceback (most recent call

AttributeError: 'str' object has no attribute 'append’

Adding all the elements of a List tothe end of List with the extend() Methods

Use list method extend() to add all the elements of another sequence to the end
of a list:

Use list method extend() to add all the elements of another sequence to the end
of a list:

color names = ['orange', 'yellow', 'green']
color names.extend(['indigo', 'violet']) # equivalent to color _names += ['ind

Use list method extend() to add all the elements of another sequence to the end
of a list:

color names = ['orange', 'yellow', 'green']
color names.extend(['indigo', 'violet']) # equivalent to color _names += ['ind

color_names

['orange', 'yellow', 'green', 'indigo', ‘'violet']

In [37]: display_quiz(path+"append.json", max_width=800)

What is printed by the following statements?

[1.2,3,[4,5], 6 7] [1.2,3,[4, 5,6, 7]]

[1.2,3,4,5 6, 7] [1.2,3,4,5 [6 7]

Removing elements from Lists with the remove() Method

The remove() method will pass the object to be removed from the 1ist whenitis
called:

The remove() method will pass the object to be removed from the 1ist whenitis
called:

spam = ['cat', 'bat', 'rat', 'elephant']
spam.remove('bat")
print(spam)

["cat', 'rat', 'elephant']

In [39]: display_quiz(path+"remove.json", max_width=800)

What is printed by the following statements?

[10, 40, 20] [10, 20, 30, 40]

[10, 30, 40, 20] [10, 30, 40]

Sorting the elements ina List with the sort() Method

Lists of numbers or lists of strings can be sorted with the sort() method:

Lists of numbers or lists of strings can be sorted with the sort() method:

spam = [2, 5, 3.14, 1, -7]
spam.sort() # The default behavior is sorting in ascending order
print(spam)

spam = ['ants', 'cats', 'dogs', 'badgers', 'Elephants']
spam.sort()

print(spam)

[-7, 1, 2, 3.14, 5]
["Elephants', 'ants', 'badgers', 'cats', 'dogs']

Lists of numbers or lists of strings can be sorted with the sort() method:

spam = [2, 5, 3.14, 1, -7]
spam.sort() # The default behavior is sorting in ascending order
print(spam)

spam = ['ants', 'cats', 'dogs', 'badgers', 'Elephants']
spam.sort()
print(spam)

[-7, 1, 2, 3.14, 5]

["Elephants', 'ants', 'badgers', 'cats', 'dogs']

Note that sort() uses "ASCIl order” rather than alphabetical order for sorting strings.
This means uppercase letters come before lowercase letters. Therefore, the lowercase a is
sorted so that it comes after the uppercase Z.

You can also pass True for the reverse keyword argument to have sort() sort the
values in reverse order.

You can also pass True for the reverse keyword argument to have sort() sort the
values in reverse order.

spam.sort(reverse=True) # Sort in descending order
print(spam)

['dogs', 'cats', 'badgers', 'ants', 'Elephants']

Searching an elementina List with the index() Method

List objects have an index() method that accepts an argument, and if that argument
exists in the list, the index of the argument is returned. If the argument isn't in the 1list,
then Python produces a ValueError error.

List objects have an index() method that accepts an argument, and if that argument
exists in the list, the index of the argument is returned. If the argument isn't in the 1list,
then Python produces a ValueError error.

spam = ['hello', 'hi', '"howdy', 'heyas']
spam.index('hi")

List objects have an index() method that accepts an argument, and if that argument
exists in the list, the index of the argument is returned. If the argument isn't in the 1list,
then Python produces a ValueError error.

spam = ['hello', 'hi', '"howdy', 'heyas']
spam.index('hi")

spam = ['hello', 'hi', 'howdy', 'heyas']
spam.index('world")

ValueError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel 5960\4200790458.py in
1 spam = ['hello', 'hi', 'howdy', 'heyas']
----> 2 spam.index('world")

ValueError: 'world' is not in list

When there are duplicates of the elements in the 1ist, the index of its first appearance
Is returned.

When there are duplicates of the elements in the 1ist, the index of its first appearance
Is returned.

spam = ['Zophie', 'Pooka', 'Fat-tail', 'Pooka’]
spam.index('Pooka")

Numerical functions for 1ist

There are a number of built-in functions that can be used on 1lists that allow you to
quickly look through a 1ist without writing your own loops:

There are a number of built-in functions that can be used on 1lists that allow you to
quickly look through a 1ist without writing your own loops:

nums = [3, 41, 12, 9, 74, 15]
print(len(nums))

6

There are a number of built-in functions that can be used on 1lists that allow you to
quickly look through a 1ist without writing your own loops:

nums = [3, 41, 12, 9, 74, 15]
print(len(nums))

6

print(max(nums))
print(min(nums))
print(sum(nums))

74

3
154

List Comprehensions

Consider how you might make a 1ist of the first 10 square numbers (that is, the square
of each integer from 1 through 10).

Consider how you might make a 1ist of the first 10 square numbers (that is, the square
of each integer from 1 through 10).

squares = []

for value in range(1,11):
squares.append(value**2)

print(squares)

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Consider how you might make a list of the first 10 square numbers (that is, the square

of each integer from 1 through 10).

squares = []
for value in range(1,11):
squares.append(value**2)

print(squares)
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

But a list comprehension allows you to generate this same list in just one line of code. A
list comprehension combines the for loop and the creation of new elements into one

line, and automatically appends each new element!

squares = [value**2 for value in range(1, 11)]
print(squares)

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

squares = [value**2 for value in range(1, 11)]
print(squares)

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

To use this syntax

e Begin with a descriptive name for the list, such as squares.

e Next, open a set of square brackets and define the expression for the values you
want to store in the new 1list. In this example, the expression is value**2

e Then, write a for loop to generate the numbers you want to feed into the
expression and close the square brackets. In this example, the for loop iterates
value in range(1, 11), which feeds the values 1 through 10 into the expression

value**2 .

Note that no colon is used at the end of the for statement.

Another common operation is filtering elements to select only those that match a
condition. This typically produces a list with fewer elements than the data being
filtered. To do thisina 1ist comprehension, use the if clause. The following includes
in 1istl only the even values produced by the for clause:

Another common operation is filtering elements to select only those that match a
condition. This typically produces a list with fewer elements than the data being
filtered. To do thisin a 1ist comprehension, use the if clause. The following includes
in 1istl only the even values produced by the for clause:

listl = [item for item in range(1, 11) if item % 2 == 0]
listl

[2) 4J 6) 8) 16]

Exercise 1: In this exercise, you will implement
the Bulls and Cows game where the computer
generates a random 4-digit secret number
with distinct digits, and the player tries to
guess it; for each guess, the program
compares the input to the secret number and
returns a result in the format "XAXB" where
each "A” indicates a digit that is both correct
and in the right position (a bull) and each "B’
indicates a correct digit in the wrong position
(a cow)—for instance, if the secret is 4271
and the guess is 1234, the output should be
"1A2B" because the digit "2" is correctly
placed while "4” and 1" are present but
misplaced.

Adigits e]3]
Game View Help
Mew Game Quit
Input: | o205 | ‘ of ‘
Guess Result
1 1234 0ALE
2 5678 0ALE
3 Q012 1A1E
4 Q087 1A1E
5 1087 0A1B
(5] Q9205 3A0B
7 9305 4808
a8
You win!) Used 171.8 s.

source: https://en.wikipedia.org/wiki/Bulls_and_Cows

In []:

import random

Generate a random four-digit number

def generate_number():
digits = list(range(10))
random.shuffle(digits) # randomly shuffle the List!
return digits[:4]

Check the user's guess against the secret number

def check guess(guess, secret):
Note that both guess and secret are Lists!
a = 0 # number of correct digits in the correct position
b = @ # number of correct digits in the wrong position

for : # 1iterate over Llist and get the index
if guess[i] == secret[i]:
a +=1
elif : # Use operator to determine whether the digit is 1in
b += 1

return a, b

Play the game

print("Welcome to 1A2B!")

print("I'm thinking of a four-digit number. Can you guess it?")
secret = generate_number()

guesses = 0

while True:

guess = input("Enter your guess, enter 'quit' to give up: ")

if guess == 'quit':
print("The secret number is", secret)
break
elif len(guess) != 4 or not guess.isdigit():
print("Invalid guess. Please enter a four-digit number.")
continue
guess = # Use Llist comprehension to get the 4-digit guess Llist

guesses += 1

result = check guess(guess, secret)

print(result[0],'A', result[1l], 'B', sep="")

if result[0@] == 4:
print("Congratulations, you guessed the number in", guesses, "guesses
break

Sequence Data Types

Lists aren't the only data types that represent ordered sequences of values. For
example, strings and lists are similar if you consider a string to be a "list" of
single text characters.

Lists aren't the only data types that represent ordered sequences of values. For
example, strings and lists are similar if you consider a string to be a "list" of
single text characters.

The Python sequence data types include lists, strings, range objects returned by
range(), and tuples . Many of the things you can do with 1lists can also be done
with strings and other values of sequence types: indexing; slicing; and using them with
for loops, with 1en() , and with the in and not in operators.

Lists aren't the only data types that represent ordered sequences of values. For
example, strings and lists are similar if you consider a string to be a "list" of
single text characters.

The Python sequence data types include lists, strings, range objects returned by
range(), and tuples . Many of the things you can do with 1lists can also be done
with strings and other values of sequence types: indexing; slicing; and using them with
for loops, with 1en() , and with the in and not in operators.

a' in 'apple’

True

Mutable and Immutable Data Types

But 1lists and strings are different in an important way. A list object is a mutable

data type: it can have elements added, removed, or changed. However, a string is
immutable: it cannot be changed. Trying to reassign a single character in a string results

ina TypeError error:

But 1lists and strings are different in an important way. A list object is a mutable
data type: it can have elements added, removed, or changed. However, a string is
immutable: it cannot be changed. Trying to reassign a single character in a string results
ina TypeError error:

name = 'Zophie a cat'
name[7] = 't'

TypeError Traceback (most recent call
last)
~\AppData\Local\Temp\ipykernel _5960\2958416556.py in

1 name = 'Zophie a cat'

----> 2 name[7] = 't

TypeError: 'str' object does not support item assignment

Tuples

A tuple is a sequence of values much like a 1ist. The values stored in a tuple can be
any type, and they are indexed by integers. The important difference is that tuples are
immutable.

A tuple is a sequence of values much like a 1ist. The values stored in a tuple can be

any type, and they are indexed by integers. The important difference is that tuples are
immutable.

Although it is not necessary, it is common to enclose tuples in parentheses to help us
quickly identify tuples when we look at Python code:

A tuple is a sequence of values much like a 1ist. The values stored in a tuple can be

any type, and they are indexed by integers. The important difference is that tuples are
immutable.

Although it is not necessary, it is common to enclose tuples in parentheses to help us
quickly identify tuples when we look at Python code:

type(())

tuple

In [53]: t=('a', lbl, Icl, 'd', lel)
type(t)

Out[53]: tuple

t:('a" lbl, ICI, ldl, lel)
type(t)

tuple

To create a tuple with a single element, you have to include the final comma or use the
tuple() function:

t:('a', lbl, lcl, ldl, lel)
type(t)

tuple

To create a tuple with a single element, you have to include the final comma or use the
tuple() function:

t1 = ('a’,)

t2 = tuple('a')
print(type(tl), type(t2))
t3 = ('a")
print(type(t3))

print(tl, t2, t3)

<class 'tuple'> <class 'tuple'>
<class 'str'>

(a',) ('a',) a

If the argument of tuple() is a sequence (string, list, or tuple), the resultis a
tuple with the elements of the sequence:

If the argument of tuple() is a sequence (string, list, or tuple), the resultis a
tuple with the elements of the sequence:

t = tuple('nsysu’)
t

(lnl, lSl, lyl, lSl, lul)

If the argument of tuple() is a sequence (string, list, or tuple), the resultis a
tuple with the elements of the sequence:

t = tuple('nsysu')
t

(lnl, IS , lyl, lSl, lul)

Most list operators also work on tuples . The bracket operator indexes an element:

If the argument of tuple() is a sequence (string, list, or tuple), the resultis a
tuple with the elements of the sequence:

t = tuple('nsysu')
t
(lnl, 'S', lyl, 'S', lul)

Most list operators also work on tuples . The bracket operator indexes an element:

print(t[0]) # t = tuple('nsysu')
print(t[1:3])

("s"', 'y")

But if you try to modify one of the elements of the tuple, you get an error:

But if you try to modify one of the elements of the tuple, you get an error:

t[o] = 'A’
TypeError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel 5960\3054271853.py in
----> 1 t[e] = 'A’

TypeError: 'tuple' object does not support item assignment

But if you try to modify one of the elements of the tuple, you get an error:

t[o] = 'A’
TypeError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel 5960\3054271853.py in
----> 1 t[e] = 'A’

TypeError: 'tuple' object does not support item assignment

You can use tuples to convey to anyone reading your code that you don’t intend for
that sequence of values to change. Use a tuple if you need an ordered sequence of
values that never changes.

In [58]: display quiz(path+"tuple.json", max_width=800)

Which of the following statements about lists and tuples in Python are true?

(Select all that apply)

Lists can store elements of different data types. The size of a tuple can be changed after it is created.
Tuples are mutable, meaning their elements can be Lists have methods like append() and extend(), while
modified after creation. tuples do not support these methods.

Both lists and tuples support indexing and slicing
operations.

Unpacking Sequences

We have seen the multiple assignment trick in the previous chapter (which is actually
unpacking the tuple). In fact, you can unpack any sequence’s elements by assigning the

sequence to a comma-separated list of variables.

We have seen the multiple assignment trick in the previous chapter (which is actually
unpacking the tuple). In fact, you can unpack any sequence’s elements by assigning the

sequence to a comma-separated list of variables.

student_tuple = ('Amanda', [98, 85, 87])

We have seen the multiple assignment trick in the previous chapter (which is actually
unpacking the tuple). In fact, you can unpack any sequence’s elements by assigning the

sequence to a comma-separated list of variables.

student_tuple = ('Amanda', [98, 85, 87])

first_name, grades = student_tuple
print(first_name, grades)

Amanda [98, 85, 87]

Unpacking is widely used to return multiple values in a function:

Unpacking is widely used to return multiple values in a function:

def total ave(grade):
total = sum(grade)

ave = total/len(grade)
return total, ave

grades = [85, 70, 100, 90]
total, ave = total ave(grades)

print(total, ave)

345 86.25

References

Technically, in Python, variables store references to the computer memory locations
where the values are stored.

Technically, in Python, variables store references to the computer memory locations
where the values are stored.

Spam = 42

cheese = spam
print(id(cheese), id(spam))
Spam = 100
print(id(cheese), id(spam))

spam, cheese

1951386922576 1951386922576
1951386922576 1951387112912

(100, 42)

Technically, in Python, variables store references to the computer memory locations
where the values are stored.

Spam = 42

cheese = spam
print(id(cheese), id(spam))
Spam = 100
print(id(cheese), id(spam))

spam, cheese

1951386922576 1951386922576
1951386922576 1951387112912

(100, 42)
The identifier returned by id() is actually the memory address of the object,

represented as a Python integer. All values in Python have a unique identity (address) that
can be obtained with the id() function.

But lists don't work this way, because list are mutable:

But lists don't work this way, because list are mutable:

spam = [0, 1, 2, 3, 4, 5]

cheese = spam # The reference is being copied, not the List.
print(id(cheese), id(spam))

cheese[1] = 'Hello!' # This changes the Llist value!
print(id(cheese), id(spam))

spam, cheese

1951470862016 1951470862016
1951470862016 1951470862016

([0, 'Hello!', 2, 3, 4, 5], [@, 'Hello!', 2, 3, 4, 5])

Using boxes as a metaphor for variables, the following shows what happens when a list
is assigned to the spam variable.

Using boxes as a metaphor for variables, the following shows what happens when a list
is assigned to the spam variable.

! ¥
RE{ET&HCE 1D: 57207444
ID: 57207444

1O, |, 2,
3 4 5]

source: https://automatetheboringstuff.com/2e/chapter4d/

Then, the reference in spam is copied to cheese . Only a new reference was created and
stored in cheese, notanew list.Note how both references refer to the same 1list.

Then, the reference in spam is copied to cheese . Only a new reference was created and
stored in cheese, notanew list.Note how both references refer to the same 1list.

r------—------‘

5 ID: 57207444

source: https://automatetheboringstuff.com/2e/chapter4d/

r=-=-==y

ID: S7207444

Reference |

1O, |, 2,
3, %, 3l

When you alter the 1ist that cheese refers to, the 1list that spam refers to is also
changed, because both cheese and spam refer to the same list.

When you alter the 1list that cheese refers to, the 1list that spam
changed, because both cheese and spam refer to the same list.

Reference |

ID: 57207444

: R 4

refers to is also

ID: S7207444

[O, ‘Hello’
2, 3,4, Bl

source: https://automatetheboringstuff.com/2e/chapter4d/

Like integer, 'Hello' isa string which is immutable and cannot be changed. If you
"change" the string in avariable, a new string object is being made at a different
place in memory, and the variable refers to this new string.

Like integer, 'Hello' isa string which is immutable and cannot be changed. If you
"change" the string in avariable, a new string object is being made at a different
place in memory, and the variable refers to this new string.

bacon = 'Hello'
print(id(bacon))

bacon = bacon + 'World'
print(id(bacon))

1951470839536
1951470840624

However, lists can be modified because they are mutable objects. The append()
method doesn't create a new list object; it changes the existing 1list object. We call
this "modifying the object in-place.”

However, lists can be modified because they are mutable objects. The append()
method doesn't create a new list object; it changes the existing 1list object. We call
this "modifying the object in-place.”

eggs = ['Hello'] # This creates a new Llist.

print(id(eggs))

eggs.append('World') # append() modifies the List "in place"”.
print(id(eggs)) # eggs still refers to the same List as before.
1951470861376

1951470861376

However, lists can be modified because they are mutable objects. The append()
method doesn't create a new list object; it changes the existing 1list object. We call
this "modifying the object in-place.”

eggs = ['Hello'] # This creates a new List.

print(id(eggs))

eggs.append('World') # append() modifies the List "in place".
print(id(eggs)) # eggs still refers to the same List as before.
1951470861376

1951470861376

If two variables refer to the same 1list (like spam and cheese in the previous section)
and the 1ist itself changes, both variables are affected because they both refer to the
same list.The append(), remove(), sort(), and other 1list methods modify
their lists in place.

Passing References

References are particularly important for understanding how arguments get passed to
functions. When a function is called, the values of the arguments are copied to the
parameter variables.

References are particularly important for understanding how arguments get passed to
functions. When a function is called, the values of the arguments are copied to the

parameter variables.

For lists (and dictionaries, which we will describe in the next chapter), this means a
copy of the reference is used for the parameter.

References are particularly important for understanding how arguments get passed to
functions. When a function is called, the values of the arguments are copied to the

parameter variables.

For lists (and dictionaries, which we will describe in the next chapter), this means a
copy of the reference is used for the parameter.

def eggs(someParameter):
someParameter.append('Hello")

spam = [1, 2, 3]
eggs(spam)
print(spam)

[1, 2, 3, 'Hello']

References are particularly important for understanding how arguments get passed to
functions. When a function is called, the values of the arguments are copied to the

parameter variables.

For lists (and dictionaries, which we will describe in the next chapter), this means a
copy of the reference is used for the parameter.

def eggs(someParameter):
someParameter.append('Hello")

spam = [1, 2, 3]
eggs(spam)
print(spam)

[1, 2, 3, 'Hello']
Notice that when eggs() is called, a return value is not used to assign a new value to

spam. Instead, it modifies the list in place directly. Even though spam and
someParameter contain separate references, they both refer to the same list.

For immutable types string and integers, we will create a new object in the function
when we modify someParameter . Therefore, the original value will not be modified after
the loop.

For immutable types string and integers, we will create a new object in the function
when we modify someParameter . Therefore, the original value will not be modified after
the loop.

def eggs(someParameter):
print(id(someParameter))
someParameter = someParameter + "world" # This will create a new object a
print(id(someParameter))

spam = "hello"
print(id(spam))
eggs(spam)
print(spam)

1951465911152
1951465911152
1951470818352
hello

The copy Module’'s copy() and deepcopy() Functions

Python provides a module named copy that provides both the copy() and
deepcopy() functions. copy(), can be used to make a duplicate copy of a mutable
value like a list or dictionary, not just a copy of a reference.

Python provides a module named copy that provides both the copy() and
deepcopy() functions. copy(), can be used to make a duplicate copy of a mutable
value like a list or dictionary, not just a copy of a reference.

import copy

spam = ['A', 'B', 'C"', 'D']
print(id(spam))

cheese = copy.copy(spam)

print(id(cheese)) # cheese is a different List with different identity.
cheese[1] = 42

spam, cheese

1951469880512
1951470840320

(['A", 'B", 'C', 'D'], ['A", 42, 'C", 'D'])

Now the spam and cheese variables refer to separate lists, which is why only the list
in cheese is modified when you assign 42 at index 1.

Now the spam and cheese variables refer to separate lists, which is why only the list
in cheese is modified when you assign 42 at index 1.

ID: 57205555 |

ID: 57205555
=P A R e 4
G ,
[I ¥ l'
| ¢ D :
| |
Reference | Reference

ID: S7208888

(A 4D
C DT

source: https://automatetheboringstuff.com/2e/chapterd/

Exercise 2: Here, we will simulate the process
of a simple card game. The game is played
with a standard deck of 52 cards, and we will
randomly select 40 cards and divide them
evenly between two players. Each player gets
a hand of 20 cards. The goal of the game is to
collect pairs of cards with the same rank (e.g,
two aces, two kings, etc.). The player with the
most pairs at the end of the game wins.

In []:

import random

Write a function create _deck that creates a List of tuples representing a s
Each tuple should contain two elements: the rank (e.g., "ace", "king", etc..
and the suit (e.g., "hearts", "spades", etc.).
def create deck():
ranks = ["A", "2", "3", "4", "5, "e", "7", "8", "9", "1le", "J", "Q", "K"
suits = ['#', "¢, '¥', '4']
deck = [(rank, suit)]
return deck

Use List comprehension to create the deck.

A function that takes the deck as a parameter and returns two Llists, each c
cards from the deck. Use List slicing and the random module to implement th
def deal cards(deck):

deck = deck[:40]

random.shuffle(deck)
handl = # Split it into 20 cards in each using slice
hand2 =

return handl, hand2

Write a function find pairs that takes a List of cards as a parameter and r
representing the pairs of cards in the Llist. A pair is defined as two cards
def find pairs(cards):
pairs = []
for i, cardl in enumerate(cards):
for j, card2 in enumerate(cards):
if i !'= j and cardl[@] == card2[@] and cardl not in [pair[@] for
and cardl not in [pair[1] for pair in pairs] and card2 not in
and card2 not in [pair[1l] for pair in pairs]:
pairs. ((cardl, card2)) # Use a method from the List to a
return pairs

deck = create_deck()

handl, hand2 = deal cards(deck)
pairsl = find_pairs(handl)
pairs2 = find_pairs(hand2)

print(pairsl)

print(pairs2)

if : # Compare the length of the two Lists
print("Player 1 wins!")

elif

print("Player 2 wins!")
else:
print("It's a tiel")

In [69]: from jupytercards import display flashcards
fpath= "https://raw.githubusercontent.com/phonchi/nsysu-mathl06A/refs/heads/m
display flashcards(fpath + ‘ch4.json")

containers

Next

	Introduction
	List
	Getting Individual Values in a List with Indexes
	Negative Indexes and the len() function
	Getting a sublist from Another List with Slices
	Changing Values in a List with Indexes
	List Concatenation and List Replication
	Removing Values from Lists with del Statements
	List traversal
	The in and not in Operators
	Using the enumerate() Function with Lists

	Methods of the list
	Adding elements to Lists with the append() and insert() Methods
	Adding all the elements of a List to the end of List with the extend() Methods
	Removing elements from Lists with the remove() Method
	Sorting the elements in a List with the sort() Method
	Searching an element in a List with the index() Method
	Numerical functions for list

	List Comprehensions
	Sequence Data Types
	Mutable and Immutable Data Types

	Tuples
	Unpacking Sequences

	References
	Passing References
	The copy Module’s copy() and deepcopy()

 Functions

